Analysis Theorems
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\def \LWRtensorindicesthreesub #1#2{{_{#2}}\LWRtensorindicesthree }\)
\(\def \LWRtensorindicesthreesup #1#2{{^{#2}}\LWRtensorindicesthree }\)
\(\newcommand {\LWRtensorindicesthreenotsup }{}\)
\(\newcommand {\LWRtensorindicesthreenotsub }{ \ifnextchar ^ \LWRtensorindicesthreesup \LWRtensorindicesthreenotsup }\)
\(\newcommand {\LWRtensorindicesthree }{ \ifnextchar _ \LWRtensorindicesthreesub \LWRtensorindicesthreenotsub }\)
\(\newcommand {\LWRtensorindicestwo }{ \ifstar \LWRtensorindicesthree \LWRtensorindicesthree }\)
\(\newcommand {\indices }[1]{\LWRtensorindicestwo #1}\)
\(\newcommand {\LWRtensortwo }[3][]{{}\indices {#1}{#2}\indices {#3}}\)
\(\newcommand {\tensor }{\ifstar \LWRtensortwo \LWRtensortwo }\)
\(\newcommand {\LWRnuclidetwo }[2][]{{\vphantom {\mathrm {#2}}{}^{\LWRtensornucleonnumber }_{#1}\mathrm {#2}}}\)
\(\newcommand {\nuclide }[1][]{\def \LWRtensornucleonnumber {#1}\LWRnuclidetwo }\)
\(\newcommand {\FF }{\mathbb {F}}\)
\(\newcommand {\cO }{\mathcal {O}}\)
\(\newcommand {\cC }{\mathcal {C}}\)
\(\newcommand {\cP }{\mathcal {P}}\)
\(\newcommand {\cF }{\mathcal {F}}\)
\(\newcommand {\cS }{\mathcal {S}}\)
\(\newcommand {\cK }{\mathcal {K}}\)
\(\newcommand {\cM }{\mathcal {M}}\)
\(\newcommand {\GG }{\mathbb {G}}\)
\(\newcommand {\ZZ }{\mathbb {Z}}\)
\(\newcommand {\NN }{\mathbb {N}}\)
\(\newcommand {\PP }{\mathbb {P}}\)
\(\newcommand {\QQ }{\mathbb {Q}}\)
\(\newcommand {\RR }{\mathbb {R}}\)
\(\newcommand {\LL }{\mathbb {L}}\)
\(\newcommand {\HH }{\mathbb {H}}\)
\(\newcommand {\EE }{\mathbb {E}}\)
\(\newcommand {\SP }{\mathbb {S}}\)
\(\newcommand {\CC }{\mathbb {C}}\)
\(\newcommand {\FF }{\mathbb {F}}\)
\(\renewcommand {\AA }{\mathbb {A}}\)
\(\newcommand {\sF }{\mathscr {F}}\)
\(\newcommand {\sC }{\mathscr {C}}\)
\(\newcommand {\ts }{\textsuperscript }\)
\(\newcommand {\mf }{\mathfrak }\)
\(\newcommand {\cc }{\mf {c}}\)
\(\newcommand {\mg }{\mf {g}}\)
\(\newcommand {\ma }{\mf {a}}\)
\(\newcommand {\mh }{\mf {h}}\)
\(\newcommand {\mn }{\mf {n}}\)
\(\newcommand {\mc }{\mf {c}}\)
\(\newcommand {\ul }{\underline }\)
\(\newcommand {\mz }{\mf {z}}\)
\(\newcommand {\me }{\mf {e}}\)
\(\newcommand {\mff }{\mf {f}}\)
\(\newcommand {\mm }{\mf {m}}\)
\(\newcommand {\mt }{\mf {t}}\)
\(\newcommand {\pp }{\mf {p}}\)
\(\newcommand {\qq }{\mf {q}}\)
\(\newcommand {\gl }{\mf {gl}}\)
\(\newcommand {\msl }{\mf {sl}}\)
\(\newcommand {\so }{\mf {so}}\)
\(\newcommand {\mfu }{\mf {u}}\)
\(\newcommand {\su }{\mf {su}}\)
\(\newcommand {\msp }{\mf {sp}}\)
\(\renewcommand {\aa }{\mf {a}}\)
\(\newcommand {\bb }{\mf {b}}\)
\(\newcommand {\sR }{\mathscr {R}}\)
\(\newcommand {\lb }{\langle }\)
\(\newcommand {\rb }{\rangle }\)
\(\newcommand {\ff }{\mf {f}}\)
\(\newcommand {\ee }{\epsilon }\)
\(\newcommand {\heart }{\heartsuit }\)
\(\newcommand {\Mloc }{\mathcal {M}_{\text {loc}}}\)
\(\newcommand {\Mnilpnil }{\mathcal {M}_{\text {nil}}^{\text {pnil}}}\)
\(\newcommand {\Uloc }{\mathcal {U}_{\text {loc}}}\)
\(\newcommand {\Mnil }{\mathcal {M}_{\text {nil}}}\)
\(\newcommand {\Unil }{\mathcal {U}_{\text {nil}}}\)
\(\newcommand {\floor }[1]{\lfloor #1 \rfloor }\)
\(\newcommand {\ceil }[1]{\lceil #1 \rceil }\)
\(\newcommand {\pushout }{\arrow [ul, phantom, "\ulcorner ", very near start]}\)
\(\newcommand {\pullback }{\arrow [dr, phantom, "\lrcorner ", very near start]}\)
\(\newcommand {\simp }[1]{#1^{\Delta ^{op}}}\)
\(\newcommand {\arrowtcupp }[2]{\arrow [bend left=50, ""{name=U, below,inner sep=1}]{#1}\arrow [Rightarrow,from=U,to=MU,"#2"]}\)
\(\newcommand {\arrowtclow }[2]{\arrow [bend right=50, ""{name=L,inner sep=1}]{#1}\arrow [Rightarrow,from=LM,to=L]{}[]{#2}}\)
\(\newcommand {\arrowtcmid }[2]{\arrow [""{name=MU,inner sep=1},""{name=LM,below,inner sep=1}]{#1}[pos=.1]{#2}}\)
\(\newcommand {\dummy }{\textcolor {white}{\bullet }}\)
\(\newcommand {\adjunction }[4]{ #1\hspace {2pt}\colon #2 \leftrightharpoons #3 \hspace {2pt}\colon #4 }\)
\(\newcommand {\aug }{\mathop {\rm aug}\nolimits }\)
\(\newcommand {\MC }{\mathop {\rm MC}\nolimits }\)
\(\newcommand {\art }{\mathop {\rm art}\nolimits }\)
\(\newcommand {\DiGrph }{\mathop {\rm DiGrph}\nolimits }\)
\(\newcommand {\FMP }{\mathop {\rm FMP}\nolimits }\)
\(\newcommand {\CAlg }{\mathop {\rm CAlg}\nolimits }\)
\(\newcommand {\perf }{\mathop {\rm perf}\nolimits }\)
\(\newcommand {\cof }{\mathop {\rm cof}\nolimits }\)
\(\newcommand {\fib }{\mathop {\rm fib}\nolimits }\)
\(\newcommand {\Thick }{\mathop {\rm Thick}\nolimits }\)
\(\newcommand {\Orb }{\mathop {\rm Orb}\nolimits }\)
\(\newcommand {\ko }{\mathop {\rm ko}\nolimits }\)
\(\newcommand {\Spf }{\mathop {\rm Spf}\nolimits }\)
\(\newcommand {\Spc }{\mathop {\rm Spc}\nolimits }\)
\(\newcommand {\sk }{\mathop {\rm sk}\nolimits }\)
\(\newcommand {\cosk }{\mathop {\rm cosk}\nolimits }\)
\(\newcommand {\holim }{\mathop {\rm holim}\nolimits }\)
\(\newcommand {\hocolim }{\mathop {\rm hocolim}\nolimits }\)
\(\newcommand {\Pre }{\mathop {\rm Pre}\nolimits }\)
\(\newcommand {\THR }{\mathop {\rm THR}\nolimits }\)
\(\newcommand {\THH }{\mathop {\rm THH}\nolimits }\)
\(\newcommand {\Fun }{\mathop {\rm Fun}\nolimits }\)
\(\newcommand {\Loc }{\mathop {\rm Loc}\nolimits }\)
\(\newcommand {\Bord }{\mathop {\rm Bord}\nolimits }\)
\(\newcommand {\Cob }{\mathop {\rm Cob}\nolimits }\)
\(\newcommand {\Set }{\mathop {\rm Set}\nolimits }\)
\(\newcommand {\Ind }{\mathop {\rm Ind}\nolimits }\)
\(\newcommand {\Sind }{\mathop {\rm Sind}\nolimits }\)
\(\newcommand {\Ext }{\mathop {\rm Ext}\nolimits }\)
\(\newcommand {\sd }{\mathop {\rm sd}\nolimits }\)
\(\newcommand {\Ex }{\mathop {\rm Ex}\nolimits }\)
\(\newcommand {\Out }{\mathop {\rm Out}\nolimits }\)
\(\newcommand {\Cyl }{\mathop {\rm Cyl}\nolimits }\)
\(\newcommand {\Path }{\mathop {\rm Path}\nolimits }\)
\(\newcommand {\Ch }{\mathop {\rm Ch}\nolimits }\)
\(\newcommand {\SSet }{\mathop {\rm \Set ^{\Delta ^{op}}}\nolimits }\)
\(\newcommand {\Sq }{\mathop {\rm Sq}\nolimits }\)
\(\newcommand {\Free }{\mathop {\rm Free}\nolimits }\)
\(\newcommand {\Map }{\mathop {\rm Map}\nolimits }\)
\(\newcommand {\Chain }{\mathop {\rm Ch}\nolimits }\)
\(\newcommand {\LMap }{\mathop {\rm LMap}\nolimits }\)
\(\newcommand {\RMap }{\mathop {\rm RMap}\nolimits }\)
\(\newcommand {\Tot }{\mathop {\rm Tot}\nolimits }\)
\(\newcommand {\MU }{\mathop {\rm MU}\nolimits }\)
\(\newcommand {\MSU }{\mathop {\rm MSU}\nolimits }\)
\(\newcommand {\MSp }{\mathop {\rm MSp}\nolimits }\)
\(\newcommand {\MSO }{\mathop {\rm MSO}\nolimits }\)
\(\newcommand {\MO }{\mathop {\rm MO}\nolimits }\)
\(\newcommand {\BU }{\mathop {\rm BU}\nolimits }\)
\(\newcommand {\KU }{\mathop {\rm KU}\nolimits }\)
\(\newcommand {\BSU }{\mathop {\rm BSU}\nolimits }\)
\(\newcommand {\BSp }{\mathop {\rm BSp}\nolimits }\)
\(\newcommand {\BGL }{\mathop {\rm BGL}\nolimits }\)
\(\newcommand {\BSO }{\mathop {\rm BSO}\nolimits }\)
\(\newcommand {\BO }{\mathop {\rm BO}\nolimits }\)
\(\newcommand {\KO }{\mathop {\rm KO}\nolimits }\)
\(\newcommand {\Tor }{\mathop {\rm Tor}\nolimits }\)
\(\newcommand {\Cotor }{\mathop {\rm Cotor}\nolimits }\)
\(\newcommand {\imag }{\mathop {\rm Im}\nolimits }\)
\(\newcommand {\real }{\mathop {\rm Re}\nolimits }\)
\(\newcommand {\Cat }{\mathop {\rm Cat}\nolimits }\)
\(\newcommand {\Fld }{\mathop {\rm Fld}\nolimits }\)
\(\newcommand {\Frac }{\mathop {\rm Frac}\nolimits }\)
\(\newcommand {\Dom }{\mathop {\rm Dom}\nolimits }\)
\(\newcommand {\Hotc }{\mathop {\rm Hotc}\nolimits }\)
\(\newcommand {\Top }{\mathop {\rm Top}\nolimits }\)
\(\newcommand {\Ring }{\mathop {\rm Ring}\nolimits }\)
\(\newcommand {\CRing }{\mathop {\rm CRing}\nolimits }\)
\(\newcommand {\CGHaus }{\mathop {\rm CGHaus}\nolimits }\)
\(\newcommand {\Alg }{\mathop {\rm Alg}\nolimits }\)
\(\newcommand {\Bool }{\mathop {\rm Bool}\nolimits }\)
\(\newcommand {\hTop }{\mathop {\rm hTop}\nolimits }\)
\(\newcommand {\Nat }{\mathop {\rm Nat}\nolimits }\)
\(\newcommand {\Rel }{\mathop {\rm Rel}\nolimits }\)
\(\newcommand {\Mod }{\mathop {\rm Mod}\nolimits }\)
\(\newcommand {\Space }{\mathop {\rm Space}\nolimits }\)
\(\newcommand {\Vect }{\mathop {\rm Vect}\nolimits }\)
\(\newcommand {\FinVect }{\mathop {\rm FinVect}\nolimits }\)
\(\newcommand {\Matr }{\mathop {\rm Matr}\nolimits }\)
\(\newcommand {\Ab }{\mathop {\rm Ab}\nolimits }\)
\(\newcommand {\Gr }{\mathop {\rm Gr}\nolimits }\)
\(\newcommand {\Grp }{\mathop {\rm Grp}\nolimits }\)
\(\newcommand {\Hol }{\mathop {\rm Hol}\nolimits }\)
\(\newcommand {\Gpd }{\mathop {\rm Gpd}\nolimits }\)
\(\newcommand {\Grpd }{\mathop {\rm Gpd}\nolimits }\)
\(\newcommand {\Mon }{\mathop {\rm Mon}\nolimits }\)
\(\newcommand {\FinSet }{\mathop {\rm FinSet}\nolimits }\)
\(\newcommand {\Sch }{\mathop {\rm Sch}\nolimits }\)
\(\newcommand {\AffSch }{\mathop {\rm AffSch}\nolimits }\)
\(\newcommand {\Idem }{\mathop {\rm Idem}\nolimits }\)
\(\newcommand {\SIdem }{\mathop {\rm SIdem}\nolimits }\)
\(\newcommand {\Aut }{\mathop {\rm Aut}\nolimits }\)
\(\newcommand {\Ord }{\mathop {\rm Ord}\nolimits }\)
\(\newcommand {\coker }{\mathop {\rm coker}\nolimits }\)
\(\newcommand {\ch }{\mathop {\rm char}\nolimits }\)
\(\newcommand {\Sym }{\mathop {\rm Sym}\nolimits }\)
\(\newcommand {\adj }{\mathop {\rm adj}\nolimits }\)
\(\newcommand {\dil }{\mathop {\rm dil}\nolimits }\)
\(\newcommand {\Cl }{\mathop {\rm Cl}\nolimits }\)
\(\newcommand {\Diff }{\mathop {\rm Diff}\nolimits }\)
\(\newcommand {\End }{\mathop {\rm End}\nolimits }\)
\(\newcommand {\Hom }{\mathop {\rm Hom}\nolimits }\)
\(\newcommand {\Gal }{\mathop {\rm Gal}\nolimits }\)
\(\newcommand {\Pos }{\mathop {\rm Pos}\nolimits }\)
\(\newcommand {\Ad }{\mathop {\rm Ad}\nolimits }\)
\(\newcommand {\GL }{\mathop {\rm GL}\nolimits }\)
\(\newcommand {\SL }{\mathop {\rm SL}\nolimits }\)
\(\newcommand {\vol }{\mathop {\rm vol}\nolimits }\)
\(\newcommand {\reg }{\mathop {\rm reg}\nolimits }\)
\(\newcommand {\Or }{\textnormal {O}}\)
\(\newcommand {\U }{\mathop {\rm U}\nolimits }\)
\(\newcommand {\SOr }{\mathop {\rm SO}\nolimits }\)
\(\newcommand {\SU }{\mathop {\rm SU}\nolimits }\)
\(\newcommand {\Spin }{\mathop {\rm Spin}\nolimits }\)
\(\newcommand {\Sp }{\mathop {\rm Sp}\nolimits }\)
\(\newcommand {\Int }{\mathop {\rm Int}\nolimits }\)
\(\newcommand {\im }{\mathop {\rm im}\nolimits }\)
\(\newcommand {\dom }{\mathop {\rm dom}\nolimits }\)
\(\newcommand {\di }{\mathop {\rm div}\nolimits }\)
\(\newcommand {\cod }{\mathop {\rm cod}\nolimits }\)
\(\newcommand {\colim }{\mathop {\rm colim}\nolimits }\)
\(\newcommand {\ad }{\mathop {\rm ad}\nolimits }\)
\(\newcommand {\PSL }{\mathop {\rm PSL}\nolimits }\)
\(\newcommand {\PGL }{\mathop {\rm PGL}\nolimits }\)
\(\newcommand {\sep }{\mathop {\rm sep}\nolimits }\)
\(\newcommand {\MCG }{\mathop {\rm MCG}\nolimits }\)
\(\newcommand {\oMCG }{\mathop {\rm MCG^+}\nolimits }\)
\(\newcommand {\Spec }{\mathop {\rm Spec}\nolimits }\)
\(\newcommand {\rank }{\mathop {\rm rank}\nolimits }\)
\(\newcommand {\diverg }{\mathop {\rm div}\nolimits }\)
\(\newcommand {\disc }{\mathop {\rm disc}\nolimits }\)
\(\newcommand {\sign }{\mathop {\rm sign}\nolimits }\)
\(\newcommand {\Arf }{\mathop {\rm Arf}\nolimits }\)
\(\newcommand {\Pic }{\mathop {\rm Pic}\nolimits }\)
\(\newcommand {\Tr }{\mathop {\rm Tr}\nolimits }\)
\(\newcommand {\res }{\mathop {\rm res}\nolimits }\)
\(\newcommand {\Proj }{\mathop {\rm Proj}\nolimits }\)
\(\newcommand {\mult }{\mathop {\rm mult}\nolimits }\)
\(\newcommand {\N }{\mathop {\rm N}\nolimits }\)
\(\newcommand {\lk }{\mathop {\rm lk}\nolimits }\)
\(\newcommand {\Pf }{\mathop {\rm Pf}\nolimits }\)
\(\newcommand {\sgn }{\mathop {\rm sgn}\nolimits }\)
\(\newcommand {\grad }{\mathop {\rm grad}\nolimits }\)
\(\newcommand {\lcm }{\mathop {\rm lcm}\nolimits }\)
\(\newcommand {\Ric }{\mathop {\rm Ric}\nolimits }\)
\(\newcommand {\Hess }{\mathop {\rm Hess}\nolimits }\)
\(\newcommand {\sn }{\mathop {\rm sn}\nolimits }\)
\(\newcommand {\cut }{\mathop {\rm cut}\nolimits }\)
\(\newcommand {\tr }{\mathop {\rm tr}\nolimits }\)
\(\newcommand {\codim }{\mathop {\rm codim}\nolimits }\)
\(\newcommand {\ind }{\mathop {\rm index}\nolimits }\)
\(\newcommand {\rad }{\mathop {\rm rad}\nolimits }\)
\(\newcommand {\Rep }{\mathop {\rm Rep}\nolimits }\)
\(\newcommand {\Lie }{\mathop {\rm Lie}\nolimits }\)
\(\newcommand {\Der }{\mathop {\rm Der}\nolimits }\)
\(\newcommand {\hgt }{\mathop {\rm ht}\nolimits }\)
\(\newcommand {\Ider }{\mathop {\rm Ider}\nolimits }\)
\(\newcommand {\id }{\mathop {\rm id}\nolimits }\)
3 Topology of \(\RR \)
-
Proof. If not, \(X\) is closed, and is a countable compact discrete space, which is a contradiction. □
-
Proof. First let’s treat locally compact Hausdorff. Let \(X_n\) be closed sparse subsets of \(X\), and \(U_0\) an open set in \(X\). We can inductively produce \(\bar {U_i} \subset
U_{i-1}\) that avoid \(X_1,\dots ,X_i\) by regularity. But then \(\cap _i\bar {U_i}\) is nonempty, so there is a point that avoids all \(U_i\). Similarly in the complete metric space case, we can choose the \(U_i\) in the
same way with the condition that the diameter of \(U_i\) is less than \(1/n\). Then again the intersection must be a single point by completeness. □
-
Proof. Suppose we have a covering with no finite subcover. Then we can divide the unit cube into \(2^n\) pieces of half the size, and at least one of these must have the same property.
We can keep doing this, getting a chain of cubes contained within one another with diameter approaching \(0\) such that this cover has no finite subcover for any of these. But the intersection of these has diameter \(0\), but
contains exactly \(1\) point by taking the limiting point of a sequence of points in each of the cubes in the chain. Taking an open set surrounding this point, we get a contradiction as infinitely many cubes must be in the open set.
□
-
Proof. If a subset is compact, it is closed as \(\RR ^n\) is Hausdorff, and bounded by looking at the cover given by open balls around the origin. Conversely if a subset is closed and
bounded, it is a closed subset of a large unit cube, hence is compact by Theorem 3.3. □
-
Proof. We will show every norm is equivalent to \(\Vert \cdot \Vert _\infty \). To do this, let \(\Vert \cdot \Vert \) be any norm, and we will show it is continuous with respect
to \(\Vert \cdot \Vert _\infty \). In particular, if \(M = \max _i\Vert \delta _i \Vert \) we have \(\Vert x\Vert \leq \sum _1^n\Vert x_i\delta _i\Vert \leq M\sum _1^n|x_i| \leq Mn\Vert x\Vert _\infty
\), so we have \(|\Vert x \Vert - \Vert a \Vert | \leq \Vert x-a\Vert \leq Mn\Vert x-a \Vert _\infty \) so indeed it is continuous.
The set \(X = \{x|\Vert x \Vert _\infty = 1\}\) is compact, so its image from \(\Vert \cdot \Vert \) by Lemma 3.6 has a minimum \(m\) and a maximum \(M\). Thus
\(m\) and \(M\) give the bounds we need for equivalence of norms. □
-
Proof. If not, we can deformation retract away from the missing point to the boundary, to yield a retraction of \(D^n\) onto \(S^{n-1}\), contradicting Lemma 3.8. In the case \(n=1\) this is looking at the connected component. □
-
Proof. If not, we can consider the line going from \(f(x)\) to \(x\) and produce a retraction \(g\) that is the intersection (on the \(x\) side) of this line with the boundary, contradicting
Lemma 3.8. □
-
Proof. We induct on \(k\), for \(k =0\) we just have \(S^n-i(D_0) = \RR ^n\). For the induction step, we replace \(D^k\) with \(I^k\). Now we split \(I^k\) into two halves
\(I^{k-1}\times [0,\frac {1}{2}],I^{k-1}\times [\frac {1}{2},1]\) and by Mayer-Vietoris and induction we have \(\tilde {H}_*(S^n-I^k) \hookrightarrow \tilde {H}_*(I^{k-1}\times [0,\frac
{1}{2}])\oplus \tilde {H}_*(I^{k-1}\times [\frac {1}{2},1])\) is an isomorphism. If there were a nontrivial (reduced) cycle \(\alpha \) in \(H_*(S^n-I^k)\) it would land nontrivially in one of the two summands on the
right, and we could repeatedly cut these up into smaller intervals, in the limit landing in \(H_*(S^n-I^{k-1})\) in which we know it would be a boundary of a chain \(\beta \). But then as \(\beta \) is compact and covered by
our cuts, it is in one of the cuts, a contradiction. □
The next theorem has the Jordan Curve Theorem as a special case:
-
Proof. By Theorem 3.12, the boundary of an embedding \(D^n \to \RR ^n\) separates \(\RR ^n\) into two components, and
since the boundary is closed, the interior of \(D^n\) is an connected component of this separation that is open in \(\RR ^n\). □
-
Proof. Take a finite subcover \(U_1, \dots , U_n\), and consider the map \(f:X \to \RR \), \(f(x) = \sum d(x,X-U_i)\). Now this function attains a minimum \(\delta \), but
\(\delta \) cannot be \(0\) as the \(U_i\) cover \(X\). Then \(\delta \) is a Lebesgue number. □
-
Proof. Let the sequence be \(f_n\) and the limit be \(f\). We need that for any \(\ee >0\) and any \(x \in X\) there is a neighborhood \(x \in U_\ee \) such that
\(d(f(x),f(y))<\ee \) when \(x,y \in U_\ee \). We can choose large enough \(n\) so we have \(\forall x,d(f(x),f_n(x))<\ee \), and a neighborhood \(U\) satisfying \(\ee \) for \(f_n\) Then we have in \(U\):
\[ d(f(x),f(y)) \leq d(f(x),f_n(x))+d(f_n(x),f_n(y))+d(f_n(y),f(y)) < \ee +\ee +\ee =3\ee \]
so we are done. □
-
Theorem 3.17. If a sequence of continuous functions \(f_n\) from a compact
space \(X\) to a metric space \(Y\) converge to a function \(f\), they uniformly converge to that function, which is continuous by Theorem 3.16.
-
Proof. For any \(\ee >0\), there is a neighborhood around each point \(x\in X\), \(U_x\) such that \(f(y)\) is within \(\ee /2\) of \(f(x)\) for any \(y \in U_x\). Then make a
finite cover of these \(U_x\) and take the maximum \(N\) for each of the corresponding points such that \(f_N\) is within \(\frac {\ee }{2}\) for these points. Then by the triangle inequality every point simultaneously satisfies
\(|f(x)-f_N(x)|\leq \ee \) for large enough \(N\). □
-
Proof. \(X\) has a countable dense subset \(x_n\), so starting with \(x_1\) we can look at \(f_i(x_1)\), which has a limit point by Lemma 3.1. This gives a subsequence which converges at \(x_1\). We can then inductively produce more subsequences for each \(x_n\) and take a diagonal sequence \(g_n\). Every
compact metric space is complete by Lemma 3.1, so it suffices to show that \(g_n\) is uniformly Cauchy. To do so, fix \(\ee >0\), and cover \(X\) with finitely many
neighborhoods around the \(x_i\) so each \(f_n\) varies at most \(\frac {\ee }{3}\) in the neighborhood. Each neighborhood contains an \(x_i\) so choose the maximum of the \(N\)s so for \(j\geq N\) the \(g_j(x_i)\)
differ by at most \(\frac {\ee }{3}\). Then for any \(x \in X\), \(j,k>N\) we have \(d(g_j(x),g_k(x)) \leq d(g_j(x),g_j(x_i)) + d(g_j(x_i),g_k(x_i)) + d(g_k(x_i),g_k(x)) < \ee \). □