Analysis Theorems
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\def \LWRtensorindicesthreesub #1#2{{_{#2}}\LWRtensorindicesthree }\)
\(\def \LWRtensorindicesthreesup #1#2{{^{#2}}\LWRtensorindicesthree }\)
\(\newcommand {\LWRtensorindicesthreenotsup }{}\)
\(\newcommand {\LWRtensorindicesthreenotsub }{ \ifnextchar ^ \LWRtensorindicesthreesup \LWRtensorindicesthreenotsup }\)
\(\newcommand {\LWRtensorindicesthree }{ \ifnextchar _ \LWRtensorindicesthreesub \LWRtensorindicesthreenotsub }\)
\(\newcommand {\LWRtensorindicestwo }{ \ifstar \LWRtensorindicesthree \LWRtensorindicesthree }\)
\(\newcommand {\indices }[1]{\LWRtensorindicestwo #1}\)
\(\newcommand {\LWRtensortwo }[3][]{{}\indices {#1}{#2}\indices {#3}}\)
\(\newcommand {\tensor }{\ifstar \LWRtensortwo \LWRtensortwo }\)
\(\newcommand {\LWRnuclidetwo }[2][]{{\vphantom {\mathrm {#2}}{}^{\LWRtensornucleonnumber }_{#1}\mathrm {#2}}}\)
\(\newcommand {\nuclide }[1][]{\def \LWRtensornucleonnumber {#1}\LWRnuclidetwo }\)
\(\newcommand {\FF }{\mathbb {F}}\)
\(\newcommand {\cO }{\mathcal {O}}\)
\(\newcommand {\cC }{\mathcal {C}}\)
\(\newcommand {\cP }{\mathcal {P}}\)
\(\newcommand {\cF }{\mathcal {F}}\)
\(\newcommand {\cS }{\mathcal {S}}\)
\(\newcommand {\cK }{\mathcal {K}}\)
\(\newcommand {\cM }{\mathcal {M}}\)
\(\newcommand {\GG }{\mathbb {G}}\)
\(\newcommand {\ZZ }{\mathbb {Z}}\)
\(\newcommand {\NN }{\mathbb {N}}\)
\(\newcommand {\PP }{\mathbb {P}}\)
\(\newcommand {\QQ }{\mathbb {Q}}\)
\(\newcommand {\RR }{\mathbb {R}}\)
\(\newcommand {\LL }{\mathbb {L}}\)
\(\newcommand {\HH }{\mathbb {H}}\)
\(\newcommand {\EE }{\mathbb {E}}\)
\(\newcommand {\SP }{\mathbb {S}}\)
\(\newcommand {\CC }{\mathbb {C}}\)
\(\newcommand {\FF }{\mathbb {F}}\)
\(\renewcommand {\AA }{\mathbb {A}}\)
\(\newcommand {\sF }{\mathscr {F}}\)
\(\newcommand {\sC }{\mathscr {C}}\)
\(\newcommand {\ts }{\textsuperscript }\)
\(\newcommand {\mf }{\mathfrak }\)
\(\newcommand {\cc }{\mf {c}}\)
\(\newcommand {\mg }{\mf {g}}\)
\(\newcommand {\ma }{\mf {a}}\)
\(\newcommand {\mh }{\mf {h}}\)
\(\newcommand {\mn }{\mf {n}}\)
\(\newcommand {\mc }{\mf {c}}\)
\(\newcommand {\ul }{\underline }\)
\(\newcommand {\mz }{\mf {z}}\)
\(\newcommand {\me }{\mf {e}}\)
\(\newcommand {\mff }{\mf {f}}\)
\(\newcommand {\mm }{\mf {m}}\)
\(\newcommand {\mt }{\mf {t}}\)
\(\newcommand {\pp }{\mf {p}}\)
\(\newcommand {\qq }{\mf {q}}\)
\(\newcommand {\gl }{\mf {gl}}\)
\(\newcommand {\msl }{\mf {sl}}\)
\(\newcommand {\so }{\mf {so}}\)
\(\newcommand {\mfu }{\mf {u}}\)
\(\newcommand {\su }{\mf {su}}\)
\(\newcommand {\msp }{\mf {sp}}\)
\(\renewcommand {\aa }{\mf {a}}\)
\(\newcommand {\bb }{\mf {b}}\)
\(\newcommand {\sR }{\mathscr {R}}\)
\(\newcommand {\lb }{\langle }\)
\(\newcommand {\rb }{\rangle }\)
\(\newcommand {\ff }{\mf {f}}\)
\(\newcommand {\ee }{\epsilon }\)
\(\newcommand {\heart }{\heartsuit }\)
\(\newcommand {\Mloc }{\mathcal {M}_{\text {loc}}}\)
\(\newcommand {\Mnilpnil }{\mathcal {M}_{\text {nil}}^{\text {pnil}}}\)
\(\newcommand {\Uloc }{\mathcal {U}_{\text {loc}}}\)
\(\newcommand {\Mnil }{\mathcal {M}_{\text {nil}}}\)
\(\newcommand {\Unil }{\mathcal {U}_{\text {nil}}}\)
\(\newcommand {\floor }[1]{\lfloor #1 \rfloor }\)
\(\newcommand {\ceil }[1]{\lceil #1 \rceil }\)
\(\newcommand {\pushout }{\arrow [ul, phantom, "\ulcorner ", very near start]}\)
\(\newcommand {\pullback }{\arrow [dr, phantom, "\lrcorner ", very near start]}\)
\(\newcommand {\simp }[1]{#1^{\Delta ^{op}}}\)
\(\newcommand {\arrowtcupp }[2]{\arrow [bend left=50, ""{name=U, below,inner sep=1}]{#1}\arrow [Rightarrow,from=U,to=MU,"#2"]}\)
\(\newcommand {\arrowtclow }[2]{\arrow [bend right=50, ""{name=L,inner sep=1}]{#1}\arrow [Rightarrow,from=LM,to=L]{}[]{#2}}\)
\(\newcommand {\arrowtcmid }[2]{\arrow [""{name=MU,inner sep=1},""{name=LM,below,inner sep=1}]{#1}[pos=.1]{#2}}\)
\(\newcommand {\dummy }{\textcolor {white}{\bullet }}\)
\(\newcommand {\adjunction }[4]{ #1\hspace {2pt}\colon #2 \leftrightharpoons #3 \hspace {2pt}\colon #4 }\)
\(\newcommand {\aug }{\mathop {\rm aug}\nolimits }\)
\(\newcommand {\MC }{\mathop {\rm MC}\nolimits }\)
\(\newcommand {\art }{\mathop {\rm art}\nolimits }\)
\(\newcommand {\DiGrph }{\mathop {\rm DiGrph}\nolimits }\)
\(\newcommand {\FMP }{\mathop {\rm FMP}\nolimits }\)
\(\newcommand {\CAlg }{\mathop {\rm CAlg}\nolimits }\)
\(\newcommand {\perf }{\mathop {\rm perf}\nolimits }\)
\(\newcommand {\cof }{\mathop {\rm cof}\nolimits }\)
\(\newcommand {\fib }{\mathop {\rm fib}\nolimits }\)
\(\newcommand {\Thick }{\mathop {\rm Thick}\nolimits }\)
\(\newcommand {\Orb }{\mathop {\rm Orb}\nolimits }\)
\(\newcommand {\ko }{\mathop {\rm ko}\nolimits }\)
\(\newcommand {\Spf }{\mathop {\rm Spf}\nolimits }\)
\(\newcommand {\Spc }{\mathop {\rm Spc}\nolimits }\)
\(\newcommand {\sk }{\mathop {\rm sk}\nolimits }\)
\(\newcommand {\cosk }{\mathop {\rm cosk}\nolimits }\)
\(\newcommand {\holim }{\mathop {\rm holim}\nolimits }\)
\(\newcommand {\hocolim }{\mathop {\rm hocolim}\nolimits }\)
\(\newcommand {\Pre }{\mathop {\rm Pre}\nolimits }\)
\(\newcommand {\THR }{\mathop {\rm THR}\nolimits }\)
\(\newcommand {\THH }{\mathop {\rm THH}\nolimits }\)
\(\newcommand {\Fun }{\mathop {\rm Fun}\nolimits }\)
\(\newcommand {\Loc }{\mathop {\rm Loc}\nolimits }\)
\(\newcommand {\Bord }{\mathop {\rm Bord}\nolimits }\)
\(\newcommand {\Cob }{\mathop {\rm Cob}\nolimits }\)
\(\newcommand {\Set }{\mathop {\rm Set}\nolimits }\)
\(\newcommand {\Ind }{\mathop {\rm Ind}\nolimits }\)
\(\newcommand {\Sind }{\mathop {\rm Sind}\nolimits }\)
\(\newcommand {\Ext }{\mathop {\rm Ext}\nolimits }\)
\(\newcommand {\sd }{\mathop {\rm sd}\nolimits }\)
\(\newcommand {\Ex }{\mathop {\rm Ex}\nolimits }\)
\(\newcommand {\Out }{\mathop {\rm Out}\nolimits }\)
\(\newcommand {\Cyl }{\mathop {\rm Cyl}\nolimits }\)
\(\newcommand {\Path }{\mathop {\rm Path}\nolimits }\)
\(\newcommand {\Ch }{\mathop {\rm Ch}\nolimits }\)
\(\newcommand {\SSet }{\mathop {\rm \Set ^{\Delta ^{op}}}\nolimits }\)
\(\newcommand {\Sq }{\mathop {\rm Sq}\nolimits }\)
\(\newcommand {\Free }{\mathop {\rm Free}\nolimits }\)
\(\newcommand {\Map }{\mathop {\rm Map}\nolimits }\)
\(\newcommand {\Chain }{\mathop {\rm Ch}\nolimits }\)
\(\newcommand {\LMap }{\mathop {\rm LMap}\nolimits }\)
\(\newcommand {\RMap }{\mathop {\rm RMap}\nolimits }\)
\(\newcommand {\Tot }{\mathop {\rm Tot}\nolimits }\)
\(\newcommand {\MU }{\mathop {\rm MU}\nolimits }\)
\(\newcommand {\MSU }{\mathop {\rm MSU}\nolimits }\)
\(\newcommand {\MSp }{\mathop {\rm MSp}\nolimits }\)
\(\newcommand {\MSO }{\mathop {\rm MSO}\nolimits }\)
\(\newcommand {\MO }{\mathop {\rm MO}\nolimits }\)
\(\newcommand {\BU }{\mathop {\rm BU}\nolimits }\)
\(\newcommand {\KU }{\mathop {\rm KU}\nolimits }\)
\(\newcommand {\BSU }{\mathop {\rm BSU}\nolimits }\)
\(\newcommand {\BSp }{\mathop {\rm BSp}\nolimits }\)
\(\newcommand {\BGL }{\mathop {\rm BGL}\nolimits }\)
\(\newcommand {\BSO }{\mathop {\rm BSO}\nolimits }\)
\(\newcommand {\BO }{\mathop {\rm BO}\nolimits }\)
\(\newcommand {\KO }{\mathop {\rm KO}\nolimits }\)
\(\newcommand {\Tor }{\mathop {\rm Tor}\nolimits }\)
\(\newcommand {\Cotor }{\mathop {\rm Cotor}\nolimits }\)
\(\newcommand {\imag }{\mathop {\rm Im}\nolimits }\)
\(\newcommand {\real }{\mathop {\rm Re}\nolimits }\)
\(\newcommand {\Cat }{\mathop {\rm Cat}\nolimits }\)
\(\newcommand {\Fld }{\mathop {\rm Fld}\nolimits }\)
\(\newcommand {\Frac }{\mathop {\rm Frac}\nolimits }\)
\(\newcommand {\Dom }{\mathop {\rm Dom}\nolimits }\)
\(\newcommand {\Hotc }{\mathop {\rm Hotc}\nolimits }\)
\(\newcommand {\Top }{\mathop {\rm Top}\nolimits }\)
\(\newcommand {\Ring }{\mathop {\rm Ring}\nolimits }\)
\(\newcommand {\CRing }{\mathop {\rm CRing}\nolimits }\)
\(\newcommand {\CGHaus }{\mathop {\rm CGHaus}\nolimits }\)
\(\newcommand {\Alg }{\mathop {\rm Alg}\nolimits }\)
\(\newcommand {\Bool }{\mathop {\rm Bool}\nolimits }\)
\(\newcommand {\hTop }{\mathop {\rm hTop}\nolimits }\)
\(\newcommand {\Nat }{\mathop {\rm Nat}\nolimits }\)
\(\newcommand {\Rel }{\mathop {\rm Rel}\nolimits }\)
\(\newcommand {\Mod }{\mathop {\rm Mod}\nolimits }\)
\(\newcommand {\Space }{\mathop {\rm Space}\nolimits }\)
\(\newcommand {\Vect }{\mathop {\rm Vect}\nolimits }\)
\(\newcommand {\FinVect }{\mathop {\rm FinVect}\nolimits }\)
\(\newcommand {\Matr }{\mathop {\rm Matr}\nolimits }\)
\(\newcommand {\Ab }{\mathop {\rm Ab}\nolimits }\)
\(\newcommand {\Gr }{\mathop {\rm Gr}\nolimits }\)
\(\newcommand {\Grp }{\mathop {\rm Grp}\nolimits }\)
\(\newcommand {\Hol }{\mathop {\rm Hol}\nolimits }\)
\(\newcommand {\Gpd }{\mathop {\rm Gpd}\nolimits }\)
\(\newcommand {\Grpd }{\mathop {\rm Gpd}\nolimits }\)
\(\newcommand {\Mon }{\mathop {\rm Mon}\nolimits }\)
\(\newcommand {\FinSet }{\mathop {\rm FinSet}\nolimits }\)
\(\newcommand {\Sch }{\mathop {\rm Sch}\nolimits }\)
\(\newcommand {\AffSch }{\mathop {\rm AffSch}\nolimits }\)
\(\newcommand {\Idem }{\mathop {\rm Idem}\nolimits }\)
\(\newcommand {\SIdem }{\mathop {\rm SIdem}\nolimits }\)
\(\newcommand {\Aut }{\mathop {\rm Aut}\nolimits }\)
\(\newcommand {\Ord }{\mathop {\rm Ord}\nolimits }\)
\(\newcommand {\coker }{\mathop {\rm coker}\nolimits }\)
\(\newcommand {\ch }{\mathop {\rm char}\nolimits }\)
\(\newcommand {\Sym }{\mathop {\rm Sym}\nolimits }\)
\(\newcommand {\adj }{\mathop {\rm adj}\nolimits }\)
\(\newcommand {\dil }{\mathop {\rm dil}\nolimits }\)
\(\newcommand {\Cl }{\mathop {\rm Cl}\nolimits }\)
\(\newcommand {\Diff }{\mathop {\rm Diff}\nolimits }\)
\(\newcommand {\End }{\mathop {\rm End}\nolimits }\)
\(\newcommand {\Hom }{\mathop {\rm Hom}\nolimits }\)
\(\newcommand {\Gal }{\mathop {\rm Gal}\nolimits }\)
\(\newcommand {\Pos }{\mathop {\rm Pos}\nolimits }\)
\(\newcommand {\Ad }{\mathop {\rm Ad}\nolimits }\)
\(\newcommand {\GL }{\mathop {\rm GL}\nolimits }\)
\(\newcommand {\SL }{\mathop {\rm SL}\nolimits }\)
\(\newcommand {\vol }{\mathop {\rm vol}\nolimits }\)
\(\newcommand {\reg }{\mathop {\rm reg}\nolimits }\)
\(\newcommand {\Or }{\textnormal {O}}\)
\(\newcommand {\U }{\mathop {\rm U}\nolimits }\)
\(\newcommand {\SOr }{\mathop {\rm SO}\nolimits }\)
\(\newcommand {\SU }{\mathop {\rm SU}\nolimits }\)
\(\newcommand {\Spin }{\mathop {\rm Spin}\nolimits }\)
\(\newcommand {\Sp }{\mathop {\rm Sp}\nolimits }\)
\(\newcommand {\Int }{\mathop {\rm Int}\nolimits }\)
\(\newcommand {\im }{\mathop {\rm im}\nolimits }\)
\(\newcommand {\dom }{\mathop {\rm dom}\nolimits }\)
\(\newcommand {\di }{\mathop {\rm div}\nolimits }\)
\(\newcommand {\cod }{\mathop {\rm cod}\nolimits }\)
\(\newcommand {\colim }{\mathop {\rm colim}\nolimits }\)
\(\newcommand {\ad }{\mathop {\rm ad}\nolimits }\)
\(\newcommand {\PSL }{\mathop {\rm PSL}\nolimits }\)
\(\newcommand {\PGL }{\mathop {\rm PGL}\nolimits }\)
\(\newcommand {\sep }{\mathop {\rm sep}\nolimits }\)
\(\newcommand {\MCG }{\mathop {\rm MCG}\nolimits }\)
\(\newcommand {\oMCG }{\mathop {\rm MCG^+}\nolimits }\)
\(\newcommand {\Spec }{\mathop {\rm Spec}\nolimits }\)
\(\newcommand {\rank }{\mathop {\rm rank}\nolimits }\)
\(\newcommand {\diverg }{\mathop {\rm div}\nolimits }\)
\(\newcommand {\disc }{\mathop {\rm disc}\nolimits }\)
\(\newcommand {\sign }{\mathop {\rm sign}\nolimits }\)
\(\newcommand {\Arf }{\mathop {\rm Arf}\nolimits }\)
\(\newcommand {\Pic }{\mathop {\rm Pic}\nolimits }\)
\(\newcommand {\Tr }{\mathop {\rm Tr}\nolimits }\)
\(\newcommand {\res }{\mathop {\rm res}\nolimits }\)
\(\newcommand {\Proj }{\mathop {\rm Proj}\nolimits }\)
\(\newcommand {\mult }{\mathop {\rm mult}\nolimits }\)
\(\newcommand {\N }{\mathop {\rm N}\nolimits }\)
\(\newcommand {\lk }{\mathop {\rm lk}\nolimits }\)
\(\newcommand {\Pf }{\mathop {\rm Pf}\nolimits }\)
\(\newcommand {\sgn }{\mathop {\rm sgn}\nolimits }\)
\(\newcommand {\grad }{\mathop {\rm grad}\nolimits }\)
\(\newcommand {\lcm }{\mathop {\rm lcm}\nolimits }\)
\(\newcommand {\Ric }{\mathop {\rm Ric}\nolimits }\)
\(\newcommand {\Hess }{\mathop {\rm Hess}\nolimits }\)
\(\newcommand {\sn }{\mathop {\rm sn}\nolimits }\)
\(\newcommand {\cut }{\mathop {\rm cut}\nolimits }\)
\(\newcommand {\tr }{\mathop {\rm tr}\nolimits }\)
\(\newcommand {\codim }{\mathop {\rm codim}\nolimits }\)
\(\newcommand {\ind }{\mathop {\rm index}\nolimits }\)
\(\newcommand {\rad }{\mathop {\rm rad}\nolimits }\)
\(\newcommand {\Rep }{\mathop {\rm Rep}\nolimits }\)
\(\newcommand {\Lie }{\mathop {\rm Lie}\nolimits }\)
\(\newcommand {\Der }{\mathop {\rm Der}\nolimits }\)
\(\newcommand {\hgt }{\mathop {\rm ht}\nolimits }\)
\(\newcommand {\Ider }{\mathop {\rm Ider}\nolimits }\)
\(\newcommand {\id }{\mathop {\rm id}\nolimits }\)
4 Derivatives
Let \(\FF \) from now on denote \(\CC \) or \(\RR \).
-
Proof. It suffices to consider \(n=1\), as this implies each of the \(\partial _if(a)\) in the general case is \(0\). In this case, note that if \(|f'(a)|>0\) then for small enough
\(\ee \) we have \(\frac {|\ee |}{|h|}<|f'(a)|\) so the function decreases on one side and increases on the other. □
-
Proposition 4.2 (Mean Value Theorem).
If \(f,g:[a,b]\to \RR \) are continuous, and differentiable on the interior, then there is a \(c\) so that
\[ (g(b)-g(a))f'(c)=(f(b)-f(a))g'(c) \]
-
Proof. Consider the function \(h = (g(b)-g(a))f(x)-(f(b)-f(a))g(x)\). \(h(a)=g(b)f(a)-f(b)g(a)=h(b)\), so either \(h\) is constant for which any point works, or it attains some
maximum/minimum on the interior of the interval, which by Proposition 4.1 yields a point \(c\) with \(h'(c) = 0\). □
Note that the Mean Value Theorem is most often used in the case where \(g(x) = x\).
The chain rule is the theorem that in the category \(\Diff \), \(d\) is an endofunctor that takes a manifold to its tangent space, and a map \(f\) to a map \(df\) (the pushforward, total derivative, or derivative) on tangent
spaces. In the case of a map between open sets of \(\FF ^n\), the tangent space is canonically identified with \(\FF ^n \times \FF ^n\). Here is the classical statement:
-
Theorem 4.3 (Chain Rule). Suppose we have \(U \subset
\FF ^l, V \subset \FF ^m, W \subset \FF ^n\), and there are maps \(f:U \to V, g:V \to W\) such that \(f\) is differentiable at \(a\), and \(g\) is differentiable at \(f(a)\). Then \(g \circ f\) is differentiable and \((g
\circ f)'(a) = g'(f(a))f'(a)\).
-
Proof. We define \(k = f(a+h)-f(a)\). Then:
\[ (g\circ f)(a+h)-(g\circ f)(a) = g(f(a+h))-g(f(a)) = g(f(a)+k)-g(f(a)) \]
\[ = g'(f(a))k + \ee _g(k) = g'(f(a))(f(a+h)-f(a)) + \ee _g(k). = g'(f(a))(f'(a)h+\ee _f(h)) + \ee _g(k) \]
\[=g'(f(a))f'(a)h + \ee \]
where \(\ee = g'(f(a))\ee _f(h) + \ee _g(k)\) so it suffices to show \(\frac {\Vert \ee \Vert }{\Vert h\Vert } \to 0\) as \(h \to 0\). With \(\Vert \cdot \Vert _o\) denoting the operator norm we have:
\[ \frac {\Vert \ee \Vert }{\Vert h\Vert } \leq \frac {\Vert \ g'(f(a))\Vert _o \Vert e_f(h)\Vert }{\Vert h\Vert } + \frac {\Vert e_g(k)\Vert }{\Vert k\Vert }\frac {\Vert f(a+h)-f(a)\Vert
}{\Vert h \Vert } \]
\[= \frac {\Vert \ g'(f(a))\Vert _o \Vert e_f(h)\Vert }{\Vert h\Vert } + \frac {\Vert e_g(k)\Vert }{\Vert k\Vert }\bigg (\frac {\Vert f'(a)\Vert _o\Vert h \Vert }{\Vert h \Vert } +
\frac {\Vert \ee _f(h)\Vert }{\Vert h \Vert }\bigg ) \]
which tends to \(0\) by hypothesis. □
-
Corollary 4.4 (Product & Quotient Rules).
\[\partial _i(f(x)g(x)) = \partial _if(x)g(x) + \partial _ig(x)f(x)\]
\[\partial _i\frac {f(x)}{g(x)} = \frac {\partial _if(x)g(x)-\partial _ig(x)f(x)}{g(x)^2}\]
-
Corollary 4.6 (Mean Value Theorem Many Variables). If \(f:\RR ^n \to \RR \) is continuous at \(a,b\) and differentiable on a neighborhood which contains the line segment strictly between \(a\) and \(b\), then there is a \(c\) on this line segment satisfying
\(f(b)-f(a) = f'(c)(b-a)\).
-
Proof. Consider the function \(g:[0,1] \to U\) going to the straight line between \(a\) and \(b\). By Proposition 4.2 we have
\((f\circ g)'(c) = f(b)-f(a)\), and we can use the chain rule to get \((f\circ g)'(c)= f'(g(c))g'(c)=f'(g(c))(b-a)\). □
-
Corollary 4.7 (Mean Value Inequality). If \(f:\RR ^m \to \RR ^n\) is continuous at \(a,b\) and differentiable on a neighborhood which contains the line segment strictly between \(a\) and \(b\), then there is a \(c\) on the line segment such that
\(\Vert f(b)-f(a)\Vert _2 \leq \Vert f'(c)\Vert _o \Vert b-a\Vert _2\).
-
Proof. Let \(u\) be the unit vector in the direction of \(f(b)-f(a)\). Then let \(U(x) = u \cdot x\), so \(U\circ f\) is a real valued function to which we can apply Corollary 4.6. We get \((U\circ f)(b)-(U\circ f)(a) = (U\circ f)'(c)(b-a) = U'(f(c))f'(c)(b-a) = u \cdot (f'(c)(b-a))\). Then we have via
Cauchy-Schwarz inequality,
\[ \Vert f(b)-f(a)\Vert _2 = |(U\circ f)(b)-(U\circ f)(a)| = |u \cdot (f'(c)(b-a))| \]
\[ \leq \Vert u \Vert _2\Vert f'(c)(b-a)\Vert \leq \Vert f'(c)\Vert _o\Vert b-a\Vert _2 \]
□
-
Corollary 4.9 (L’Hôpital’s Rule). If \(f,g:\RR ^n
\to \RR \) are continuous, differentiable in a deleted neighborhood of \(0\), \(f(0) = g(0) = 0\), and \(\lim _{x \to 0}g'(x) \neq 0,\lim _{x \to 0}f'(x)\) exist, then
\[ \lim _{x \to 0}\frac {f(x)}{g(x)} = \lim _{x \to 0}\frac {f'(x)}{g'(x)} \]
-
Proof. Use Proposition 4.2 on a small interval \((-\delta ,\delta )\) around the origin, to get \(\frac {f(x)}{g(x)} = \frac
{f(x)-f(0)}{g(x)-g(0)} = \frac {f'(x_0)}{g'(x_0)}\) for some \(x_0\) in the interval. Letting \(\delta \to 0\) we are done. □
-
Proof. It suffices to prove this when \(n=1\) as being differentiable is equivalent to being differentiable in each component. Now fix an \(h\) in a small enough ball. We have by
Proposition 4.2:
\[f(a_1+h_1,\dots ,a_i+h_i,a_{i+1},\dots ,a_n) - f(a_1+h_1,\dots ,a_{i-1}+h_{i-1},a_{i},\dots ,a_n)\]
\[= h_i\partial _if(a_1+h_1,\dots ,a_{i-1}+h_i, \alpha _i,a_{i+1},\dots ,a_n)\]
where \(\alpha _i \in (a_i,a_i+h_i)\). Now we have
\[f(a+h)-f(a) = \sum _ih_i\partial _if(a_1+h_1,\dots a_{i-1}+h_{i-1},\alpha _i,a_{i+1}+h_{i+1},\dots ,a_n) \]
\[=h(\partial _if(a)) + \ee \]
where
\[\frac {\Vert \ee \Vert }{\Vert h\Vert } \leq \sum _i\Vert \partial _if(a_i+h_i,\dots ,\alpha _i,\dots ,a_n)-\partial _if(a)\Vert \]
which tends to \(0\) as \(h \to 0\) by continuity of the partial derivatives. □
-
Proposition 4.11. If \(f:\FF ^2\to \FF \) is continuous near a point \(a\), has partials \(\partial
_1f,\partial _2f,\partial _1\partial _2f,\partial _2\partial _1f\) near \(a\), and the mixed partials \(\partial _1\partial _2f,\partial _2\partial _1f\) are continuous near \(a\), then they are equal at \(a\).
-
Proof. By Proposition 4.2, we have
\[\partial _1\partial _2f(x'',y'') = \partial _2f(x+h,y'')-\partial _2f(x,y'') \]
\[= f(x+h,y+k)-f(x+h,y)-f(x,y+k)+f(x,y)\]
\[ = f(x+h,y+k)-f(x,y+k)-f(x+h,y)+f(x,y)\]
\[ = \partial _1f(x',y+k)-\partial _1f(x',y) = \partial _2\partial _1f(x',y') \]
so letting \(k,h \to 0\) by continuity we are done. □
-
Proposition 4.12 (One-variable Taylor Expansion). If
\(f:\RR \to \RR \) has continuous partial derivatives up to \(k+1^{th}\) order near \(a\), then for small enough \(h\) we have
\[f(a+h) = \sum _0^k\frac {1}{i!}f^{(i)}(a)h^i + \frac {1}{(k+1)!}f^{(k+1)}(\alpha )h^{k+1} \]
with \(\alpha \in (a,a+h)\).
-
Proof. Let \(R(x)\) be \(f(a+x)-\sum _0^k\frac {1}{i!}f^{(i)}(a)x^i - \frac {1}{(k+1)!}cx^{h+1}\) such that \(c\) is chosen so that \(R(h)=0\). We want to show \(c =
f^{(k+1)}(\alpha )\) as above. To do this, use Proposition 4.2 many times, first on the fact that \(R(0)=R(h) = 0\) to get a \(a_1\) where \(R'(a_1)=0\), and then
repeating this on \(R'(0)=R'(a_1)=0\). Then finally we will have a \(a_{k+1}\) with \(R^{(k+1)}(a_{k+1}) = 0\), at which point taking the \(k+1^{th}\) derivative yields \(0=R^{(k+1)}(a_k) =
f^{(k+1)}(a+a_{k+1})-c\), so we are done. □
-
Corollary 4.13 (Many-variable Taylor Expansion). If
\(f:\RR ^n \to \RR \) has continuous partial derivatives up to \(k+1^{th}\) order near \(a\), for small enough \(h\) we have
\[f(a+h) = \sum _0^k\sum _{j_1,\dots ,j_i = 1}^n\partial _{j_1}\dots \partial _{j_i}f(a)\prod _{l=1}^ih_l + \sum _{j_1,\dots ,j_{k+1} = 1}^n\partial _{j_1}\dots \partial _{j_{k+1}}f(\alpha
)\prod _{l=1}^{k+1}h_l\]
with \(\alpha \) in the line segment between \(a\) and \(a+h\).